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Probability theory~isda study of random phenomeha,
that is, phenomena'Whose outcomes cannot be predicted with
certainty. Like many other branches bf'mathematics, it
arose from attempts to solve pﬁysical problems. Its origin
dates back to the seventeenth centuryl It is said that a
French nobleman at that time was interested in several
games played at Monte Carlo but tried unsuccessfully to
derive mathematically the frequencies of bets that would
be won. He was acquainted with two of the best mathematicians
of that time, Fermat (1601 - 1665) and Pascal (1623 - 1662),
and so he mentioned his difficulties to them. ' This began
a famous éxchange of letters b-tween the two mathematicians
concerning the applications of mathematics to gameé of
chance. This exchange of letters is now considered as the
beginning of probability theory as we know 1t todav.

Although probablllty theory started more than three
hundred years ago, a proper mathematlcal foundation of it
was not lald unt11 1933 when a Ru581an mathematlclan,

A. N. Kolwogorov, gave an ax1omat1c treatment of the sub-
ject. Slnce then great strldes have been made in its
development Beforo the mathematlcal foundatlon was esta-
blished, the notlon of equal llknllhood was used to cal-
culate probabllltles. ”If'an’experlment consists of a

finite number of p0881b1e Qutcemes which are equally likely,

This is the text of a public lecture organized by the
Soeiety delivered on October 22, 1975.
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“hern the probability of an event occuring was taken to be
the ratio of the number of oﬁtcomeé‘faVOuring'the event
to the number of possible outcomes. This is known as the
classical notion of probability. The French mathematician,
Laplace (1749 - 1827), actually proposed to use this as
a definition of probability. But as a definition it is
logically inadequate, since equal likelihood depends on the
notion of probability. However,from the technical point
of view, it reduces probability to counting.

Let us see how probabilities can be calculated
using the notion of equai likelihood. Suppose we roll a
die which is balanced.  'Then there are six possible equally
likely outcomes and the probability that 4 will show up is -
1/6. Consider a slightly more complicated problem. Supposc
we roll a balanced die n times and ask for the probability
m 4" will sh¢w up. ~There are 6" possible outcomes which.
are equally-likely. 'Among these ‘there are (;)Sn-m outcomes
with exactly m 4's. Therefore the probability that exactly

m 4's show up is

% o My BymEyrem
e m e 6T

.. Let us now consider the following problem. - Suppose
the probability of an event occuring igwan.gxpériment has
been determined to be 1/6 and we wish‘fq‘findﬁthe probability
that the event oecups.egactlyAhﬁtihesﬁih n repetitions of
the experiment (or~trials).:fTb‘ﬁglyéxthis problem, we can
resort to the artifice of identifying the event with one
face of a balanced die and prbéeeg the argument as-in the
previous -example. Of course we will end up with the same
answer. This kind of argument can be extended to yieid the
following result: if the probability of an event occuring
in an experiment is p where p is a fraction, then the
probability that the event occurs exactly m times in n
repetitions of the experiment is (g)pm(l - P How
we ask the next question. What happens if p is an irrational
number, that is p is not a fraction ? For example p = ¥2/3.

Such a situation can arise in real life problems. For example,
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si3lJero2 bonb being-dropped randomly into an area of
dimensions 50 metres by 50 metres. A particular target
‘at . the centre of the square is hit if the bomb falls
‘within 10 metres of it. Then by applying an extehsior of
equal llkellhood the probablllty that the target 1s hit
is equal to 10 W/SO = w/25 which is an 1rratlonal number.
In such a case we may 1dent1fy the event with a facc of £
a'many—faced die 'and pass to an appropriate 11m1t as the
numbeh of faces: becomes 1nf1n1tely large, since every'
1rratlonal number has a sequence of. fractions tendlng to
5 S ThlS process may" ‘be awkward, but we will get the vaer
of the p”Obablllty which is the same as that for- fractlons
In fact, by the same Drocess, the follow1ng more general
result can be obta*ned the' probablllty that an event :

occurs ml, m . OL.my times 1n n trlals, where: the

2,.0
probab;llty p of its occurance in each trlal may or -may
not be a fractlon, 52 e TR BT : Hahe s Lo
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.The above method of calculatlng prcbabllltles
is only limited to a relatlvely small number of 1nstances.
There are (far rore other cases, patlcularly those with
1nf1n1tely many outcomes, to, which this me thod 1s not.
applicable:: ‘This 1s where the axiomatic approach trlumphs.

What 'is the ax1omat1c approach ? It is actually
quite simple. We otart with the set @ of all poss1b1e
outcomes and choose a sultable collection F of subsets of
Q. The set Q is called the sample space and members of -

F are called events. A probability P:is a nonnegative_v
function defined on F such that it satisfies the following
twe axioms: - . ' :

P1. If‘Al;:AQ,}.. are mutually exclasive

evénts (i.e. no two of them have commom

outcomes), then the probability of the event

{A; or A, or ..+} is equal to the sum of the.

constituent events. Symbolically,

Y;Allor Azfpr e i P(Al) +-P(A2) +
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P25 Theswhole sampie space Q is assigned (bv convention)
probability 1.° !

In applying this approach to problems involving
repetitions of an experiment, one needs to introduce the
notion of indépendence. 'Two events A and B are said to be
independent if P(A and B) = P(A)P(BR). This rule of mul-
tiplication is a mathematical formulation of independence
(in the ordinary sense) of two events each of which has nc

influence on the occurance of the sther. - The noti~n of

independence can be extended to more than two é;éﬁéSEﬂ a
given numbef~of.eventsyare4indepgndentfifﬁthe-probability
of the simultaneous occurance of any fihife number of them
is the product of the probabilities of the individual
occurances, of the correspondlng events.c

In the example of n repetltlons of an experlment
where the probablllty of a glven event occurlng,;nqan ex-
perlment has been found to.be ajreal'numberﬁp,~the%sampié
space - can be taken to bé the set of all n-tuples of 0's P
and 1's. We represent the occurance or non-occurance of the
given event by “1f or “Q" respectively. - For example, if
n = 4, then (1,0,5,0) means ‘that the event occurs only in
the first triai.  We then take F'to be the ‘collection of all
subsets of (there are 2% of them). = We now : determine the '
probability PZon Fa The occurance of the events A = 31

{(ay sevesa ) ta; =1, a = 0or 1l for k # i} corresponds to

k
the occurance of the glven event in- the ith trial. It is

therefore natural to assume the following:

1.7 P(Ay) = p”fdr SRS S

2. Al,..:?An'are‘indepéndent..-

It can be shown that these two assumptions together
with the axioms Pl and P2 uniquely determine the probability
P. Simple calculations then show that the probability that

the given event occurs my, m vs My times in n trials is

2,..
precisely the formula (1) given above.
There is yet another notion of probability - the

relative frequency notion. Let k be the number of times an
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event occurs in n repetitions of an'experiment. Since
antiquity it has been observed that the raticn k/n approaches
a constant for very large n in many instances. This was
Dartlcularlv so in the field of demorgraphy where it had

been found that the observed ratios of the number of girls

to the number of births in large cities were all very close

to 0.48. From the time of Fermat and Pascal, this statlstlcal
regularity has been observed in coin tossing, die rolling

and many games of chance. In fact, there has been extensive
experimenfa} cvidence to confirm this phenomenon. “ :

Tt is therefore”naturai to take the relative frequen-
ey of the occurances of ‘an evért in d large number of trials
to be an approximate value of the probability of the occurance
of the event. This method of evaluating a probability is
only empirical and may‘not be applicable in some instances.
Nevertheless in cases where repetitions of an experiment can
be performed the observed relative frequency has always been
very close to ‘the theoretical value of the probablllty cal-
culated" by using ‘the classical notLOn of probablllty or the
ax1omat1c approach * In.the 1920! S, the Austrlan born ;
Ameridan mathematician: K. i ofon lees, trlcd to ax1omatlze"
Drobablllty theory ohithe basis of relatlve frequency but
his approach did not receive w1despread acceptance among
mathematician®&i - : R ooy

: Experiments have shown that the relatlve frequency
over a large number of trials approaches the theoretical
value of probability. The question now is whether this can
e proved thedretically. Theﬁanswer?isAyes. This was '
first proved by the Swiss mathematician Jacques Bernoulli
{1654 - 1705). Let p be the probability of occurance of an
event and k the number of its occurances in n trials. He'
proved that the probability. that k/n differs from p by less
than any preass1gned number (no matter how small) approachcs
1 as n increases indefinitely. Symbollcally, for cvery T 0,

~n

P(lg -p|l >€) +0 asn > =,
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Ey the cla331 al notlon of probablllty, he showed that
P(IE - Pl i e5b=.' E: (E) S 3 S Lt
l--P|>s

where the summation is taken over. those values of k for
which Iﬁ - p| > €. He then used~St1r11ng s formula tﬂ
to complete the procf. This result is known as the weak law:
of large numbers. Today its proof has been very much simpli=-
fied and the law vastly generalized.

Two hundred years' later, the French mathematician
E. Borel proved (1909) the following astounding result:
almost every number between 0 and 1 has asymptotically the
same number’ oft'0'sand' 1's in its binary expansion.  Nowi: &
every number *t between 0 and 1 -admits an expansion of the
form ’ :

a4 (2 apd 25 +: a.l2 it Do clp e, g

where each as 1s elther 0 or 1 We wrlte t = 0. a1a2a3

and call it the blnary expan81on of ¥ For example, .
5/8 = 1/2 + 0/2° +1/2° + 0/2" + ... and therefore 5/8 is
equal to 0. 101000... Certaln numbers have two dlstlnct blnary ¥
expan51ons. For example, 5/8 1s also equal to 1/2 * 0/2 4340
A2 e L™ O S i /8 = 0.100111... Conversely

every binary expan51on 0.a corresponds to a number

between 0 and 1.' We can aéo§t3a conventlon whereby every
number corrcsponds to one and only one blnary expan51on, and
rice versa. What Borel actually proved was that the set of
aumbers oetween O and 1 w1ththe property (in binary
axpansion)

_%&g (a1~+ a, o S +.an)/n = 1/2

has Lebesgue measure 1 (@ 3

This result has a very significant probabilistic
meaning. Consider repeating an experiment indefinitely
where in each trial the probability of an event occuring is
1/2. Identify the cccurance of the event by 1 and its

non-occurance by 0. Then the sample space consists of
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all infinite sequences of 0's and 1's and therefore as ob-
served earlier we can identify these sequences with the
set of numbers between 0 and 1. The occurance of the
event Ai = {0. @,8,84. .00 A, S g a, = o'l for k.2 i}
corresponds to that of the given event in the ith trial.
A probability P on any suitable collection of subsets of
the set of numbers between 0 and 1 must be such that

; 3 P(Ai) =% Tor A1l T 2 TaZsceot

2 Al’

It turns out that the conditions 1 and 2 uniquely

A2"“ are independent.

determlne P which equals the Lebesgue measure. Consequently,
the event that the relat1ve frequency of occurances of the
given event approaches % has probability 1 This result is
is known as the strong 1aw of large numbers. Logically it
implies:the weak law.of large numbers in the case P = %.
.Like the weak law, it has'beeh vastly generalized and
extended. In:pafticular; one need not take the set of
numbers between 0 and 1 as thevsample space and the conclusion
continues .to hold if any number between 0 and 1, not ne-
cessarily %, is taken.

= verywreal sense, the weak and the strong
laws of large numbers tell us that although the outcome of
each repetition of an experiment cannot be predicted with
certainty, the relative frequency of occurances of a par-
ticular:event approaches w1th certalnty the probability
of its occurance as the number o i trlals increases indefinite-
3, R Hlstorlcally these are the first two laws in pro-
bability theory which show that there is indeed certainty
within uncertainty. v ' ' ;

‘Nevertheless;”these two laws are mathematical

thecrems. They do not in any way establish any physical
truths. _The‘impoffant thing is that they agree with empi-
rical resuits,'thereby confirming the belief that proba-
bility theory is an adeqhate model for random phenomena.

What applicétions‘doﬁthese laws have 2?2 An im-
portant alelcatlon is that thay provide a theoretical basis
for the solutlon of determ1nlst1c problems by the Monte
Carlo method. The ¥snte Carlo method is a method of sol-

ving numerical problems by means of the construction of a
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random process. Historically, the first example of the
method is Buffon's celebrated problem of needle-tossing in

b & 5 g i whereby.helcalculated the value of . But the name
"Monte Carlo' and its systematlc development only dates back

to the 1940's. THe method was oopularlzed by Fermi,

Metropolis, von Neumann and ‘Ulam.

| Let us see what role the laws of large numbers
play in Buffon s needle problem. A plane is partitioned
by parallel lines separated by a distance of 2a. The pro-
bability th%t a needle of length 27 (I « a) thrown at ran-
dem onto tho plane will intersect a 11ne can be calculated
to be ZZ/aw.‘ If a heedle is thrown n times and it inter-
sects. a line k times, then by the laws of large numbers,
k/n approaches ZZ/an with high nrobnblllty for large
n. Then the value of 7 can-be apprnx1mated by 2In/ak for

-large n. Since the time of Buffon, a large number of needle

throwing ekperimeﬁtsihave been carried out. The followihg are

:sqme;gﬁ the_recordéd'resultsr

= ‘ Number of . |” Experimental
Experimenter Year Throws | Value of =
Pt ™ =" 1add °] 5000 T ] 9.1596
‘smith 7 -] 1855. | 3204 %% T 3 1583
[rom T &SP fegk | 1140 ° [ 2.1419
Lazzarini 1901 3408_ 7 173.1815929

T+ 18 pessiblemtc’calculateﬁjthe number ef:
needlas rgquifed in'obdep’to obtain the desired degree of
scguracy. A fcrmule'fof'thisiis- -

P(|— - pl ¢ 2.1 - 1/une2
where p in this case is 2Z/aﬁ.' But the value of n calculated
by “this formula is usually much larger than necessary. A
more accurate frrmula for n can be derlved u51ng the normal
approximation to the binomial dlstrlbutlon._ : :
. Another example where the Monte Carlo method finds
application is the evalpation of integrals. Suppbse we wish to

evaluate the integral [, f(x)dx where 0 & f(x) ¢ 1. We
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’

-use the computer to ‘generate n.painS‘(xl;yl),;..y (&h,yn)

.. .of random numbers between o and 1. The value of the integral

. is precisely the probability that each pair of the random
 numbers,, which represents a point in the plane, will fall
~below the.curve y = f(x). Let k be the number of pairs (xi,y-)
which fall below the.curve y = f(x), i.e. for which y
Y3 §;f‘xi)f By. the: laws of. large numbers k/n is almost [of(x)dx
with high probability: for large n and so k/n can be taken as

an approximate value of the integral. d

As an example, consider the integral [, x dx. A

total. of three thousand pa1rs of random numbers between 0
and 1 were generated using the IBM 1130. ' The values of k/n
. corresponding to different values of n are tabulated below:

‘i red kin
100 ..|:.0.36000"
200 | 0,36500

300 | 0.36333
400 .| 0.35500
500 | 0.35600
600 | 0.35833

~700i | 0.35285
1000 | 0.35000
1200.:-0+38388 2y o/ rod s L,

1 1300Y 0.33538

}215004::0. 33466+

+: 1660 |:0.33500
1700 0.34117

2000 | 0.34100
2200 | 0.34090 -
2500 | 0.33920

| 2700 | 0.3381Y

. |- 2900 | 0.33655

3000 | 0.33900 | ¢

Note that forrlarge n the experimental value
Qf the lnLegral is reasonably: close to 1/3 which is the
theoretical value. :
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The laws of large numbers tell us that certain
random observations must éventually lead to a constant.
This may be the reason for the existence of many physical
constants. If one pushes this argument further, even the
deterministic laws of ﬁéfuré'ﬁéy*bé'thé”conéeQuehces‘of the
laws of largé numbers. J. Bernoulli went even further.

He wrote in his book Ars Conjeetandi:

| ' b allheveniS'from now through eternity were -
continually observed (whereby probability
would ultimatefy become certainty); it would
be found that everything in the world occurs
for definite reasons and in definite conformity
with law, and that hence we are constrained,
even for things that may seem quite accidental,
to assume a certain necessity and, as it were,
fatefulness. For all I know that is what
Plato had in mind when, in the doctrine of
the universal cyclée, he maintained that after
the passage of countless centuries every-

thing would return' to its original state.”

Notes '

(1) Stirling's formula states that
n! v 27 nnfke-n

where the symbol ~N means that as n gets larger and
larger, the ratio of the numbers on both sides of the
symbol becomes closer and eloger o 1.

Cﬂ The Lebesgue méasure'wasiihtroduced by the twentieth
century French mathematician Henri Lebesgue. It is
an extension\of‘the,dbdinary notion of length. TFor
example thejgetfof all numbers between 0 and 1 has
Lebesgue measure equal to 1 (intuitively it is of
length 1). The set of all fractions between 0 and 1
has Lebesgue measure 0 while the set of all irraticnal
ﬂumbers between 0 and 1 has Lebesgue measure 1 (so
‘fha% there are {many more' irrational ndmbers than
fractions). i
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A QUERY

Mr, A.D, Villanveva has sent in a query on the follow-
ing geometrical problem

Let ABCD be a qUadrllateral, and let E and F be the
points of intersection of the opposite sides produced.
The segments AC, BD aﬂd-EFfare called the diagonals»qf the
quadrilateral ABCD. -Supppse we are given the lengths of
the 3 diagonals of a'quadrﬁlateral which can be inscribed
in a ecircle (i.e. concycllc) The problem is to construct
the quadrilateral using compass and ruler conly. Is the
smlutlon un1que° Is the 01rcum3cr1b1ng circle un1que°_
Ic there a known relatlon between the lengths of the 3 :

diagonals?

Any reader who can help Mr. Villanveva is requested
to5 write to the Editor.
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