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Probability theory is a study of random phenomena, 

that is' phenomena ~Jhose outcomes cannot be predicted t,.;rith 

certainty. Like many other branches of mathematics, it 

arose from attempts to solve physical proble ms. Its origin 

dates back to the seventeenth century. It is said that a 

French nobleman at that time was interested in several 

games played at Mont~ Carlo btit t~ied ~nsuccessfully to 

derive mathematically the frequencies of bets that would 

be ~von. He was acquainted with 'two of the best mathematicians 

of that tim~, Fermat (1601 - - 1665) and Pascal (162-3 - 1662) ~ 

and so he ' mentioned his diffic~ltie~ to them. · This began 

a famous ~xchang~ df letter~ b~ tweeri the~ two math~m~ticians 

concerning the applications ·of mathematics to games of 

chance. This exchange of letters is now consid~red as the 

beginning of probability .theory a,s. - ~~ know it to·d.ay. 

Although probability the6ry started more than three 

hundred years ago, a proper m~thematical foundation of it 

was not le.id until 193 3 when ·a Russian mathematician, 
r • • ~ • 

'·; ! •• 

A. ~. Kolmogorov, gave an axiomatic treatment of the sub-
·' ·'-·' 

ject. Since then great strides; have been made in its 
- ; ' i_· 

development. _ Before the mathematical foundation was esta-

blished, the notion of equal likelihood was used to cal­

culate probabilities. If an _experiment consists of a 

finite number of possible outcomes which are equally like ly, 

This is the text of a public lecture organized by the 

Society delivered on October 22, 1975. 
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~~c _ the probabili~y of an event occuring was taken to be 

the ratio of the number of outcomes: favouring the event 

to the number of possible outcomes. This is known as the 

classical notion of probability. The French mathematician, 

Laplace (1749- 1827), actually proposed to ·use this as 

a definition of probability. But as a definition it 1s 

logically inadequate, since equal likelihood depends on the 

notion of -probability. However;from the ~echnical point 

of view', it reduces probability to counting. 

L~t us See how probabilities can be calculated 

using the notion of equal likelihood. Suppose we roll a 

die which is balanced. · Then there are s1x possible equally 

likely outcomes and the probability that 4 will show up 1s 

1/6. Consider a slightly mor~ complicated problem. Suppose 

we roll a balanced die n ' time~ and ask for the probability 

m 4 •s will shew up. ·There are 6n possible· outcomes which. 

ll l .k 1 Am h · h (n)Sn-m · are equa · y 1 e y. · , ong ·t .ese 't ere are outcomes 
m 

with exactly m 4 1 s. Therefore the probability that exactly 

m 4 1 s show up is 

= ( ~) ( ~ ) m ( ~ ~n-m 
n · 6 

Let us now consider ,the follo~ing problem . . Su~pose 

the probabi~i ty . of an eventoccuring ii:f. an experiment has 

been determined to be l/6 and we ';J~sh to . find .. the probability 

that the event occur$ .e0actly m ,t:\mes 1n n repetitions of 

the experiment (or -trials). To pplve _this problem, we can 

resort to the artifice of ide~tifying the event with one 

face Of a balancGd siie and procee<j t})G argument as · in the 

previous -example. Of course we will end up with the same 

answer. This kind of argument can be extended to yield the 

following resuJ.t: if thq probability of an event occur1ng 

in an experiment 1s p where p is a fraction, then the 

probability that the e vent occurs exactly m times in n 

t · · f · ..... · t · ( n) m ( 1 ) n --m T\T repe 1 t1ons o r:,..:; exper1men 1s m p -· p . ,Jow 

we ask the next question. What happens if p is an irrational 

number, that is p 1s not a fraction? For example p = 12/3. 

Such a situation can ar1se in real life J2roblems. For example, 
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.. . ~. -, : .. 'J:.1b being dropped randomly into .::tn area of 

dimensions 50 metres by 50 metro~. A particular target 

at the · centri of ttie square is hit if · the bomb falls 

within 10 metres of it. Then by applying an extensior. of 

equal likelihood, th~ probability that the target is _hit 

is equal .tQ 102 n/S0 2 = n/25 which is an irrational number. 

In ·such a case we- m~y" identi~y the event with a face of . , 

a m~ny-faced die· and pass to an appropriate limit as :the. .. 

number of faces be·corrle-s i~fini tely 1:n.rge, since 'every 

irrati~mal· .~umber · has a sequence .of .fractions tending to 

it. This process may~ be awkward, but we will get the value 

of th~ probability .which .is the same as that for fractions. 

In fact, by the pame process,. the -r'ollowing more general 

result can be obtnined: ·the probai:>ili ty that an event 

occurs m15 m
2

, .... or~ timies.in 'n . trials, where the 

probability p of its occura:nce in ea:ch trial may dr may 

not be a f~action, is 

. k m. 
-. i~i · <~. )·p , l (1 

l 

. n-m. . l 
p) <r) . 

The abbve metho.d·. of calculating prob~l?ili ties. 
J .... 

' ' . 

lS only'limited to a relatively small number of instances. 

There are Sfar ~6~e ot~er cases~ paticul~rly those. with 

infin_i tely: l'Ild.ny ;dutbo~~·s, tq_ which this m'etho.d is not 

applicable·; ' This is >'~h~re the axiomatic· approach . triumphs . . 

What : i~(i:h~ ·_axiom9-tic approach ? It is actually 

quite s,iJnpl•e. We start wi t.h the set 0. of all possible 

outcomes and cho~sk a su'i table collection F of subsets of 

~. The set n is called the sample space and members of 

rare called events. A probability ·P is a nonnegative . 

function defined on F such that it satisfies the following 

tvJO axioms : 

Pl. If : A1 , ~Q'''. are m~tually exclusive 

events . (i.e: no two of them have commom 

outcomes), the.n the pro.bability of the event 

'{A
1 

or A
2 

or ... } . is equal to the sum of the 

constituent events. Symbolically, · 

+ •.• 
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P 2 . '::'::::: vJhole sample space 0. lS assigned (bv convention) 

probability 1. · 

In applying this approach to problems involving 

repetitions of an experiment, one needs to introduce the 

notion of independence. Two events A and B are said to be 

independent if P(A and B) = P(A)P(B). This rule of mul­

tiplication is a mathematical formulation of independence 

(in the ordinary sense) of two events each of which has no 

influence on the occurance of the 0th~r . . The n0ti~n of 

independence can be extended to more than two event~~ a 

given number of events are independent ,. if the probability 
.· ~. ) 

of the simultaneous occurance of any finite number of them 

is the _pr.odu.ct of the probabilities of the individual 

occuran,c~s>~ '_sf _th~,-cbrrespondif,g events . . 

In .the example·· df n repetitions of an experiment. 

•vhere the pr~babili ty .-of a given , event ocouring ,:i.n ,c:m. ' ex~ 
periment has b~en foun<i to be a. real number ;p, the ,sample 

space n can be taken to b~ the se~ of all n-tuples of O's 

and l's. We representthe occurance :or non-occurance of the 

given event by 11 1,11 or "0 11 respectively. · For example, if 

n = 4, then ( 1, 0 ,'o, 0) means '·that the event occu17s only in 

the first trial. 'itJe then take! · P: ·to be the ··collection of all 
' . Ii . 

subsets of 0 (there are 2 of them). ~. we now 1determine the 

probability P on F. The occurance of · the events A. = 
. l. ' 

{Ca1 , ... ,an) : _ai = 1, a~= 0 or 1 fork~ i} corresponds to 

the occuraDce of the giveri event in· the ith trial. It is 

therefqrenatural to assume the following: 

1. P(A.) = p 'for i = 1, ..• ,n 
l. 

2. A1 , .. ;~~n are independent . . 

It can be shown that these two assumptions together 

with the axioms Pl and P2 uniquely determine the probability 

P. Simple calculations then show that the probability that 

the given event occurs m1 , m2 , ... , ~times inn trials is 

precisely the f ormula (1) given above. 

There is yet another notion of probability - the 

r e lative frequency notion. Let k be the number of times an 
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event occurs liT n repetitions of an experiment. Since 

an-tiquity it has been observed that the ~atiQn k/n approaches 

a const~nt fo~ very large n in many instances. This was 
I ~- . . 

particularly so in the field - of demorgraphy where it had 

been found that the observed ratios of -the number of girls 

·t:o the n~;nber of births in lc>.rge cities were all very close 

. to 0.48. Frnm the time of Fermat and Pascal, this statistical 

regularity h~s - bee~ observed in cbin tossing, die rolling 

and many games~ oi chanbe. In fact, there has- been extensive 

experimental evidence to confirm this phenomenon. 

It 'is therefor-e ' natur-al· to take the relative frequen­

cy of the occurances of ' an evcint·in a large number of trials 

to be an approximate value of the probability of the occurance 

of the event. This method of evaluating a probability is 

only empirical and may not be applicable iri ~orne instances. 

Nevertheless in cases where repetitions of an experiment can 

be performed the observed relative frequency has alwn.ys b-een 

very close; to' ·the theore.tical ~alue of the prnbabili ty cal­

culate-d _by usfng the classical, nption of prqbabili ty or the' 

axiom~ tic ' approach. Ih the 1920's, the Austr:Lin-bor·n 

Americari ·rria:thematician : R, von N.ises ,_ tri-2d to axiomatize· 

probabiiitY th~or~ on .the basis of relative frequ~ncy b~t 

his appro-ach did- not. receive- widespread a9?eptance among 

mathematidiah'S> 

Exper-iments have ;shown tha.t the relative frequency 

r)\T·2r n. large number of trials appro,a.ch,_es the theoretical 

vn.luc of probability. The question now ii whethe~ this can 

·)e pro ved the0retically. The ansv-1er .. _is yes. This was 

first proved by the Swiss mathematician Jacques Bernoulli 

( 1654- 1705). Let p be the probability of occurance of an 

event and k the number of its occura1_1ces ln n trials. He 

proved th~t the prob~bility that k/n differs from p by less 

than any preassigned number (no mat-t;er hew small) approaches · 

1 as n increases indefinitely. Symbolically, for every E > 0, 

P( I~ -PI > E) + 0 as n + oo, 
·n 
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Fy the classical notion of probability, he showed that 

P( ,~ - PI > £) = 
n 

where the sununation is taken over those values of k for 

'·7hich I~ - pI >' :e:. He then used Stirling 1 s formula (1) 
to complete the 'p·roof. This result is known as the weak law 

of large numbers. Today its proo·f has· been very much sirnpli­

fied and the law vastly gene~alized. 

Two hundrea years later, the French mathematician 

E. Borel proved ( 190 9') the •following astounding result: 

almost every number between 0 and 1 'has asymptotically the 

same number of 0 1 s and 1 1 s · in its ·binary expanslon. Now ! · 

every number -'t between 0 and 1 admits an· expansion of the 

form 

3 
3. l2 

3 + ... .. 

where each ai is either 0 or 1. We write { = 0. a
1 
a 2~, 3 ..• 

and call it th'e binary expansion of t. For ·example~ 

5/8 = 1/2 + 0/2 2 ~ - l/23 ' + 0/.24. + and -therefore :5/8 lS , .. 

equal to 0 .101000~ .. . te~taln numbers h.:{\..re_; t:~o ' d.is1tin6~ bikary 
. 2' 

expansions. For example, 5/8 is also equal to 1/2 + _01~ + 
3 4 ' s . . ,,. ·, - ,, -

0/2 + 1/2 + 1/2 + .•• so that 5/8 = 0.100111 ... c6nversely 

every binary ex'p'a,nsion 0. al a2a·~' : .. c.'o:rresponds to a number 

l:YetHeen 0 and 1. · We can adopt .a con.vent:lo:n. whereby every 

number corresponds to one- and only one binary eLxpansion' and 

· ·ice 1e r ·sa. i~7hat Borel actually p'roved was that the set of 

~1umbers between 0 and 1 wi ththe property (in binary 

c~xpanaion) 

lim 
n-+oo 

has Lebesgue measure 1 (2) 

+ ... +a )/n = 1/2 
n 

This result has a very significant prob~bi1istic 

meaning. Consider repeating an experiment inde finitely 

where ln each trial the probability nf an event occuring is 

1/2. Identify the occurance n f the event by 1 and its 

non-occurance by 0. Then the sample space c onsists of 
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all infinite sequences of O's and 1's and therefore as ob­

served earlier we can identify these sequences with the 

set of numbers between 0 and 1. The occurance of the 

event Ai = {O.a1a 2a 3 ... : ai= 1, ak = 0 or 1 fork~ i} 

corresponds to that of the given event in the ith trial. 

A probability P on any suitable collection of subsets of 

the set of numbers between 0 and 1 must be such that 

1. P(A.) =~for all i = 1,2, ... ; 
l 

2. A1 , A
2

, ... are independent. 

It turns out that the conditions 1 and 2 uniquely 

determine P which equals the Lebesgue measure. Consequently, 

the event that the relative £requency of occurances of the 

given event approaches ~has probability 1. This result is 

is known as the strong lat..r of . large numbers. Logically it 

implies the weak law . of large numbers in the case p = ~. 
Like the weak law.t .,it has been vastly generalized and 

extended. In par.ticular, one need not take the set of 

numbers between 0 and 1 as the sample space and the conclusion 

continues to hold if any number between 0 and 1, not ne ­

cessarily ~' is tak~n. 

~ In ~ . very _~eal sense, the weak and the strong 

laws of large numbers tell us that although the outcome of 

each repetition of an experiment cannot be predicted with 

certainty, the relative frequency of occurances of a par­

ticula~ event approaches .~~th certainty the probability 

o f its c5ccurance as the number of .. trial~ increases indefinite ­

ly. Historic~lly, these are the first tw6 laws in pro­

bability theory which show that there is indeed certainty 

within uncertainty. 

Nevertheless, these two laws are mathematical 

theorems. They do no~ in any way establish any physical 

truths. The important thing is that they agree with empi ­

rical results, thereby confi~ming the belief that proba­

bility t~eory is an adequate model for random phenome na. 

tmat applicc:.tions do these latvs have ? An im­

portant application is tha t they provide a the oretical basis 

for the solution of deterministic problems by the Monte 
.. l 

Carlo method. The vJnte Carlo method is a method o f s o l-

ving numerical problems by means of the construction of a 
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random process. Historically, the first example of the 

method is Buffon's celebrated problem of needle-tossing 1n 

1777, tvhcreby he calculated the value of TI. But the name 

~onte Carlo' and its systematic development only dates back 

: tQ the 1940's. The method was popularized by Fermi, 

l1etropolis, von Neumann and Ulam. 

Let us see what role the laws of large numbers 
'* · 

play in Buff~~'s needle problem. A plane 1s partitioned 

by parallel ,lines separated by a distance of 2a. The pro­

bability thi-tt aneedle of length 2! (l < a) thrown at ran­

dom onto the plane will intersect a line can be calculated 

to be 2l/aTI. If ' a fie~dle is thrown n times and it inter­

sects a )ine k times, then by the laws of large numbers, 

k/n approaches iila7T :With high probability frir l~rge 

n. Then the value of ·n- can - be approximated by 2ln/ ak for 

. large n. Since the time of Buffon, a large number of needle 

throw~ng experlmetits ; have been carried out. - The followihg are 

-sqme ,of the recorded results~ 
. · .. 

_, 

-~Experimental ; Number of 
Experimenter Year Thrm.:rs V.=J.lue of 

.. 
' . -; . ., 

· t,Jolf 1850 5000 '. 3.1596 -' 
'srr{i t'h 

. -
1855 3204 3 .15 53 

Fox ' 1894 1120 3.1419 

Lazzarini 
'--.' 

' 3.1415929 1901 3408 
-

·, 

It is possible to C>?..lculate_ : ·_. the nur.1ber -::f 

ncedl~s r~~uired in order to obtain the desired degree of 

o1 ccuracy. -A fcrmula for ' this 'is 
·, .. 't 

P<IJ.s- PI~ n 

, 2 
E) ) 1 - l/4nE 

' 

7T 

· ~here p in this case is 2l/aTI. But the value of n calculated 

by -this formula is usually much lRrger than necessary. A 

more accurate formula for - n can be derived .using .· the normal 

approximati.t.;n to the binomial distribution. 

Another example Hhere t;he Honto. Carlo method finds 

application is the evaluation of integrals. Suppose we wish t o 
1 

evaluate the integral / 0 f(x)dx where 0 ~ f(x) ~ 1. We 
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use. the co:npu ter :to generate n pairs ( x
1

;, y 
1

) , ••• , (x~, Y n) 

.. ·of random numbers • between o and 1. The value of- the' integral 

lS precisely the probability that each pair of the random 

numbers, which :qepresents a point in the plr:me, ·will fall 

below the_ curw~ .Y ·= f(x) .-. Let k be the number of pairs (x. ,y.) 
l l 

which fall below t)1e . curve v = f ( x) ~ i.e. for which 
1 

Yi .(_ f(xi) ,. By the: laws of large -numbers k/n is almost ! 0 f(x)dx 

with high probability; for large n· and s o k/n can be taken as 

an appro_x;imate value of the integral. 
1 2 

. As an example, consider the integral fo x dx. A 

total . of three thousand pairs of random numbers bett--Jeen 0 

and 1 were generated using ~he IBK 1130. The values of k/n 

. corr-espon-ding to different va-lues o f n are tabulated belm..; : 

: n l k/n 

100 . :.0. 36000 ' 

200 0 ~ ·3:6 5 O·O 

-300 0.36333 

4 0.0 ' 0. 35500· 

500 0.35600 

soo 0.35833 

' 700 • 0.35285 
" 

1000 0.35000 

1200 ' 0.34333 1 

13 00 \ 0.33538 
.. 1500 ;~' o. 3 3.4&.6 ·, :.~ .. 

: 160'0 .0.33500 

·- 1.7_00 0.34117 

2000 0.34100 

2200 0.34090 -

. 2500 0. 3.3920 

2700 0.33814 

2900 0.33655 

.• 3000 0. 3 3 90-0 

.Note that f o r • large n the experimental value 

o£ the -integral ~s reasona~ly. close to 1/3 which is the 

theoretical value. 
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The laws of large numbers tell us that certain 

random observations must ~ventually lead to a constant. 

This may be the reason for the existence of many physical 

constants. If one pushes this argument further, even the 

deterministic laws 6f n~ture 6ay be the conse4uehc~s of the 

l2.ws of large numbers. J. Bernoulli went even further. 

He wrote in his book Ars Conjectandi: 

(1) 

'' If all
1 

events from now through eternity were 

continually observed (v7hereby probability · 

vmuld ultimately become certainty) { it would 

be found that everything in the world occurs 

for definite reasons and 1n definite conformity 

with law, and that hence we are constrained, 

even for things . th::tt may seem quite accidental, 

to assume a certain necessity and, as it were, 

fatefulness. · For all I know that is ~.vhat 

Plato had in mind when, in the doctrine of 

the universal cycle, he maintained that after 

the passage of countless centuries every-

thing would . return ' to its original state.,, 

Notes 

Stirling's formula states that 

n! 'V 1(2'1T) n+~ -n n ·e 

whe r e the symb0l "' means that as n gets larger and 

larger, the ratio· of the numbers on both sides of the 

symbo l becomes closer an!d closer to 1. 

(2) The Lebesgue m~a.sure 'Has introduced by the twentieth 

century French mathematician Henri Lebesgue. It is 

an extension of the drdinary notion of length. For 

example the set of ~li numbers between 0 and 1 has 

Lebesgue measure equal to 1 (intuitively it is o f 

length 1). The 'set o'f all fractions between 0 and 1 

has Lebesgue measure 0 Hhile the set o f all irrationa l 

riumbers between 0 and 1 has Lebesgue measure 1 (so 

' that there are 'many more' irrational numbers than 

fractions) . 
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* 
.•. 
" * * * * 

,. 'A QUERY ... 

Mr. A.D. Villanveva has sent in a query on the follow­

lng geometrical problem~ \ 

Let ABCD be a qUadrir~teral, and let E and F be the 

points of intersectio~ of the oppo site sides produced. 

The segments AC, BD and EF ' are called the diagonals o f the 

quadrilateral ABCD. ~ Suppo se we are given the lengths o f 

the 3 diagonals of a ·quadrilateral which can be inscribed 

in a circle (i.e. concycl{c). The problem is to c onstruct 

the quadrilateral using compass and ruler only. Is the 

snlutic n unique? Is the circumScribing circle unique? 

Is there a known relation between the lengths of the 3 

diagonals? 

-. 

i\.ny reader who can help Mr. Villanveva is requested 

t 0 write to the Editor. 
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